

Catalog

Synchronous Servo Gearmotors CMP40 – 100 Servomotors with R, F, K, S, W, BS.F, PS.F, PS.C Gear Units

Edition 05/2010

16833619 / EN

1	Intro	duction	6
	1.1	The SEW-EURODRIVE Group of Companies	6
	1.2	Products and systems from SEW-EURODRIVE	/
	1.3	Additional documentation	9
	1.4	Product names and trademarks	10
	1.5	Copyright notice	10
2	Prod	uct Description of Gear Units and Gearmotors	11
	2.1	General information	11
	2.2	Corrosion and surface protection	12
	2.3	Extended storage of R, F, K, S, W gear units	14
	2.4	General product description R, F, K, S, W gear units	16
	2.5	General product description BS.F, PS.F, PS.C gear units	19
	2.6	Explosion protection according to ATEX	21
3	Over	view of Types and Unit Designation	22
-	3.1	Types and options of R, F, K, S, W gear units	22
	3.2	Types and options of BS.F, PS.F and PS.C gear units	34
	3.3	Type designations of servo gearmotors	38
	3.4	Nameplate for servo gearmotors	39
	3.5	Overview of servo gearmotors	40
4	Proie	et Planning Notes for Servo Gearmotors	41
•	4.1	Additional documentation	41
	4.2	Data for drive and gear unit selection	42
	4.3	Project planning procedure	44
	4.4	Project planning notes for R, F, K, S, W gear units	48
	4.5	Project planning notes for BS.F, PS.F, PS.C gear units	53
	4.6	Project planning example Gantry with servo drives	57
5	Mour	ating Positions of Gear Units	68
5	5.1	General information on the mounting positions of R. F. K. S. W	00
		gear units	68
	5.2	Order information for servo gearmotors R, F, K, S, W gear units	69
	5.3	General information on mounting positions for	
		BS.F, PS.F, PS.C gear units	71
	5.4	Order information for servo gearmotors BS.F, PS.F, PS.C gear units	72
	5.5	Order information for servo gearmotors	74
	5.6	Key to the mounting position sheets	76
	5.7	Mounting positions of helical gearmotors R	78
	5.8	Mounting positions of parallel shaft helical gearmotors F	83
	5.9	Mounting positions of helical-bevel gearmotors K	86
	5.10	Mounting positions of helical-worm gearmotors S	89
	5.11	Mounting positions of SPIROPLAN [®] gearmotors W	95
	5.12	Mounting positions of helical-bevel servo gearmotors BSF	98
	5.13	Mounting positions of planetary servo gearmotors PSF, PSC	. 107

L	
L	
L	
L	
	<u> </u>

6	Desig	n and Operating Notes	109
	6.1	Reduced backlash gear unit types	109
	6.2	Assembly/disassembly of gear units with hollow shaft and key	110
	6.3	Gear units with hollow shaft	114
	6.4	TorqLOC [®] hollow shaft mounting system for gear units with hollow shaft.	115
	6.5	Gear units with flange block shaft	116
	6.6	Shouldered hollow shaft with shrink disk option	117
	6.7	Fastening the gear unit	124
	6.8	Torque arms	124
	6.9	Flange contours of RF. and R. F gear units	125
	6.10	Flange contours of FF., KF., SF., and WF. gear units	126
	6.11	Flange contours of FAF., KAF., SAF., and WAF. gear units	127
	6.12	Fixed covers	128
	6.13	Oil aging and vibration sensor for R, F, K, S, W gear units	130
	6.14	Lubricants and fill quantities	134
7	Impo	rtant Notes on Selection Tables and Dimension Sheets	144
	7.1	Notes on the selection tables	144
	7.2	Notes on dimension sheets	145
	7.3	Gearmotor dimensions	148
	7.4	Dimensions for CMPZ motors	149
8	Helica	al Gearmotors – R Gear Units	150
	8.1	Types	150
	8.2	RX57 - 107 / CMP – Selection tables, dimension sheets	151
	8.3	R07 - 107 /CMP – Selection tables, dimension sheets	153
9	Paral	lel Shaft Gearmotors – F Gear Units	237
	9.1	Types	237
	9.2	F27 - 107 / CMP - Selection tables, dimension sheets	239
10	Helic	al-Bevel Gearmotors – K Gear Units	310
	10.1	Types	310
	10.2	K37 - 107 / CMP – Selection tables, dimension sheets	312
			070
11		al-worm Gearmotors – 5 Gear Units	372
	11.1	S37 - 67 / CMP - Selection tables dimension sheets	374
	11.2		574
12	SPIR	OPLAN [®] Gearmotors – W Gear Units	401
	12.1		401
	12.2	W37 - 47 / CMP – Selection tables, dimension sheets	403
13	Helica	al-Bevel Gearmotors – BS.F Gear Units	417
	13.1	Types	417
	13.2	BS.F202 - 802 / CMP - Selection tables, dimension sheets	419
	13.3	Front-end mounting – Dimension sheet	455
	13.4	Torque arm – Dimension sheet	456
	13.4 13.5	Torque arm – Dimension sheet Tolerances and chamfers of flange block gear units – Dimension sheet	456 457

4

EURODRIVE

14	Plane	etary Gearmotors – PSF/PSBF Gear Units	458
	14.1	Types	458
	14.2	PSF121/122 - 921/922 - Selection tables, dimension sheets	459
	14.3	PSBF221/222 - 821/822 / CMP - Selection tables, dimension sheets	485
	14.4	Tolerances and chamfers of flange block gear units - Dimension sheet	502
15	Plane	etary Gearmotors – PS.C Gear Units	503
	15.1	Types	503
	15.2	PSC221/222 - 621/622 / CMP - Selection tables, dimension sheets	504
16	Main	Technical Data of Servomotors	517
	16.1	Technical data of CMP motors	518
	16.2	Technical data of CMPZ motors	522
17	Abbr	eviation Key and Index	524
	17.1	Abbreviation key	524
	17.2	Address Directory	529

1 Introduction

1.1 The SEW-EURODRIVE Group of Companies

Global presence

Driving the world with innovative drive solutions for all branches and every application. Products and systems from SEW-EURODRIVE are used in a multitude of applications worldwide. Be it in the automotive, building materials, food and beverage or metal-processing industry the decision to use drive technology "made by SEW-EURODRIVE" stands for reliability for both functionality and investment.

We are represented in the most important branches of industry all over the world: with 13 manufacturing plants, 67 assembly plants in 47 countries and our comprehensive range of services, which we consider an integrative service that continues our commitment to outstanding quality.

Always the right drive

The SEW-EURODRIVE modular concept offers millions of combinations. This wide selection enables you to choose the correct drive for all applications, each based on the required speed and torque range, space available and the ambient conditions. Gear units and gearmotors offering a unique and finely tuned performance range and the best economic prerequisites to face your drive challenges.

The gearmotors are powered by MOVITRAC[®] frequency inverters, MOVIDRIVE[®] inverters and MOVIAXIS[®] multi-axis servo inverters, a combination that blends perfectly with the existing SEW-EURODRIVE program. As in the case for mechanical systems, the development, production and assembly is also carried out completely by SEW-EURODRIVE. In combination with our drive electronics, these drives provide the utmost in flexibility.

Products of the servo drive system, such as low backlash servo gear units, compact servomotors or MOVIAXIS[®] multi-axis servo inverters provide precision and dynamics. From single-axis or multi-axis applications all the way to synchronized process sequences, servo drive systems by SEW-EURODRIVE offer a flexible and customized implementation of your application.

For economical, decentralized installations, SEW-EURODRIVE offers components from its decentralized drive system, such as MOVIMOT[®], the gearmotor with integrated frequency inverter or MOVI-SWITCH[®], the gearmotor with integrated switching and protection function. SEW-EURODRIVE hybrid cables have been designed specifically to ensure cost-effective solutions, independent of the philosophy behind or the size of the system. The latest developments from SEW-EURODRIVE: MOVITRANS[®] system components for contactless energy transfer, MOVIPRO[®], the decentralized drive control and MOVIFIT[®], the new decentralized intelligence.

Power, quality and sturdy design combined in one standard product: With high torque levels, industrial gear units from SEW-EURODRIVE realize major movements. The modular concept will once again provide optimum adaptation of industrial gear units to meet a wide range of different applications.

Your ideal partner

Its global presence, extensive product range and broad spectrum of services make SEW-EURODRIVE the ideal partner for the machinery and plant construction industry when it comes to providing drive systems for demanding applications in all branches of industries and applications.

1.2 Products and systems from SEW-EURODRIVE

The products and systems from SEW-EURODRIVE are divided into 4 product groups. These 4 product groups are:

- 1. Gearmotors and frequency inverters
- 2. Servo drive systems
- 3. Decentralized drive systems
- 4. Industrial gear units

Products and systems used in several group applications are listed in a separate group "Products and systems covering several product groups". Consult the following tables to locate the products and systems included in the respective product group:

1. Gearmotors and frequency inverters					
Gear units/gearmotors	Motors	Frequency inverters			
 Helical gear units/helical gearmotors Parallel-shaft helical gear units/parallel-shaft helical gearmotors Helical-bevel gear units/helical-bevel gearmotors Helical-worm gear units/helical-worm gearmotors Helical-worm gear units/helical-worm gearmotors SPIROPLAN[®] right-angle gearmotors SPIROPLAN[®] right-angle gearmotors Geared torque motors Pole-changing gearmotors Variable speed gear units/variable spe	 Asynchronous AC motors/AC brakemotors Pole-changing AC motors/AC brakemotors Energy-efficient motors Explosion-proof AC motors/AC brakemotors Torque motors Single-phase motors/single- phase brakemotors Asynchronous linear motors 	 MOVITRAC[®] frequency inverters MOVIDRIVE[®] inverters Control, technology and communication options for inverters 			
gearmotors to AIEX standard					

2. Serv	2. Servo drive systems				
Servo gear units/servo gear- motors		Servomotors	Servo drive inverters/servo inverters		
 Lo^o ge: mc Lo^o sei ge: e R, mc Ex uni 	w backlash planetary servo ar units/planetary gear- otors w backlash helical-bevel rvo gear units/helical-bevel armotors F, K, S, W gear units/gear- otors plosion-proof servo gear its/servo gearmotors	 Asynchronous servo- motors/servo brakemotors Synchronous servo- motors/servo brakemotors Explosion-proof servo- motors/servo brakemotors Synchronous linear motors 	 MOVIDRIVE[®] servo inverters MOVIAXIS[®] multi-axis servo inverters Control, technology and communication options for servo drive inverters and servo inverters 		

3. Decentralized drive systems					
Decentralized drives	Communication and installation	Contactless energy transfer			
 MOVIMOT[®] gearmotors with integrated frequency inverter MOVIMOT[®] motors/brake- motors with integrated fre- quency inverter MOVI-SWITCH[®] gearmotors with integrated switching and protection function MOVI-SWITCH[®] motors/ brakemotors with integrated switching and protection function Explosion-proof MOVIMOT[®] and MOVI-SWITCH[®] gear- motors 	 Fieldbus interfaces Field distributors for decentralized installation MOVIFIT[®] product range MOVIFIT[®] MC to control MOVIFIT[®] drives MOVIFIT[®] SC with integrated electronic motor switch MOVIFIT[®] FC with integrated frequency inverter 	 MOVITRANS[®] system Stationary components for energy supply Mobile components for energy consumption Line cables and installation material 			

4. Industrial gear units

Helical gear units

Bevel-helical gear units •

• Planetary gear units

Products and systems covering several product groups

Operator terminals MOVI-PLC[®] drive-based control system .

In addition to products and systems, SEW-EURODRIVE offers a comprehensive range of services. These include:

- ٠ Technical consulting
- Application software ٠
- Seminars and training
- Extensive technical documentation
- International customer service •

Visit our homepage at

\rightarrow www.sew-eurodrive.com

The website provides comprehensive information and services.

1.3 Additional documentation

Content of this publication

This "Synchronous Servo Gearmotors" catalog provides a detailed description of the following product groups from SEW-EURODRIVE:

- The combination of CMP synchronous servomotors mounted directly to
 - R, F, K, S, W gear units
 - BS.F gear units
 - PS.F gear units
 - PS.C gear units

The descriptions include:

- Product descriptions
- Overview of types
- Project planning information
- Visual representation of mounting positions
- Explanation on the order information
- · Combination overviews and technical data
- Dimension sheets

For details on motor options, refer to the "Synchronous Servomotors" catalog/price catalog.

For details on gear unit options and adapters, refer to the "Gear Units" and "Servo Gear Units" catalogs/price catalogs.

For information on the combination of CFM servomotors with the above mentioned gear units, refer to the catalog/price catalog "Synchronous Servo Gearmotors", edition 04/2008.

Additional documentation

The following documents are available from SEW-EURODRIVE in addition to this "Synchronous Servo Gearmotors" catalog:

- "Synchronous Servomotors" catalog/price catalog
- "AC Motors" price catalog/catalog
- "Gear Units" price catalog/catalog
- "Servo Gear Units" price catalog/catalog
- "AC Motors Inverter Assignments and Characteristic Curves" manual

These price catalogs and catalogs offer the following information:

- Product descriptions
- Technical data and inverter assignments
- · Important information about tables and dimension sheets
- Description of the different types
- Selection tables
- Dimension sheets
- Technical data
- Notes on adapter mounting

1.4 Product names and trademarks

The brands and product names in this catalog are trademarks or registered trademarks of the titleholders.

1.5 Copyright notice

Copyright © 2010 - All rights reserved.

Copyright law prohibits the unauthorized duplication, modification, distribution, and use of this document, in whole or in part.

2 **Product Description of Gear Units and Gearmotors**

2.1 General information

Coating

The gear units, synchronous servomotors and servo gearmotors from SEW-EURODRIVE are painted as follows:

Туре	Coating according to DIN 1843
Synchronous gearmotor with BS.F / PS.F /PS.C	RAL 0005 block
Synchronous gearmotor with R, F, K, S, W gear unit	RAL 9005 black

Special paints are available on request.

Weight specifications

Please note that all weights shown in the catalogs exclude the oil fill for the gear units and gearmotors. The weights vary according to gear unit type and gear unit size. The lubricant fill depends on the mounting position which means no universally applicable information can be given. For approximate lubricant fill volumes depending on the mounting position, refer to the gear unit catalog. For the exact weight, refer to the order confirmation.

Brakemotors On request, motors and gearmotors can be supplied with an integrated mechanical brake. SEW-EURODRIVE brakes can be divided into two types:

- Type 1: DC-operated electromagnetic disk brake that is released electrically and applied with spring force, with working capacity and emergency stop properties.
- Type 2: DC-operated electromagnetic disk brake that is released electrically and applied with spring force, with the typical properties of a holding brake for highly dynamic servomotors.

Due to their operating principle, all brake types are applied if the power fails. This means they meet the basic safety requirements. A type 1 brake can also be released mechanically if equipped with manual brake release. All brake types are controlled by a control element that is either installed in the motor wiring space or the control cabinet.

Type 2 brakes can also be controlled directly by a suitable inverter or servo inverter, such as $\text{MOVIAXIS}^{\textcircled{B}}$.

A characteristic feature of the brakes is their extremely short design. The brake bearing end shield is a part of both the motor and the brake. The integral construction of the SEW-EURODRIVE brakemotor permits particularly compact and sturdy solutions.

International markets

On request, SEW-EURODRIVE supplies UL registered motors or CSA certified motors with connection conditions according to CSA and NEMA standard.

For the Japanese market, SEW-EURODRIVE offers motors conforming to JIS standard. Contact your sales representative to assist you in such cases.

2.2 Corrosion and surface protection

General information

SEW-EURODRIVE offers various optional protective measures for operation of motors and gearmotors under special ambient conditions.

The protective measures comprise two groups:

- Corrosion protection KS for motors
- Surface protection OS for motors and gear units

For motors, optimum protection is offered by a combination of KS corrosion protection and surface OS protection.

Special optional protective measures for the output shafts are also available.

KS corrosion protection

KS corrosion protection for motors comprises the following measures:

- · All retaining screws that are loosened during operation are made of stainless steel.
- The nameplates are made of stainless steel.
- A top coating is applied to various motor parts.
- The flange contact surfaces and shaft ends are treated with a temporary anticorrosion agent.
- Additional measures for brakemotors.

A sticker labeled "KORROSIONSSCHUTZ" (corrosion protection) indicates that special treatment has been applied.

OS surface protection

In addition to standard surface protection, motors and gear units are available with surface protection OS1 to OS4. The special procedure "Z" is also available. Special procedure "Z" means that large surface recesses are sprayed with a rubber filling prior to painting.

Surface protection ¹⁾		Ambient conditions	Sample applications	
Standard		Suitable for machines and systems in buildings and rooms indoors with neutral atmospheres. According to corrosivity category ²⁾ : • C1 (negligible)	 Machines and systems in the automobile industry Transport systems in logistics Conveyor belts at airports 	
OS1		Suited for environments prone to condensation and atmospheres with low humidity or contamination, such as applications outdoors under roof or with protection. According to corrosivity category ²): • C2 (low)	 Systems in saw mills Hall gates Agitators and mixers 	
OS2	-	Suitable for environments with high humidity or mean atmospheric contamination, such as applications outdoors subject to direct weathering. According to corrosivity category ²⁾ : • C3 (moderate)	 Applications in amusement parks Funiculars and chair-lifts Applications in gravel plants Systems in nuclear power plants 	
OS3		Suitable for environments with high humidity and occasionally severe atmospheric and chemical contamination. Occasionally acidic or caustic wet cleaning. Also for applications in coastal areas with moderate salt load. According to corrosivity category ²): • C4 (high)	 Sewage treatment plants Port cranes Mining applications 	
OS4	-	Suitable for environments with permanent humidity or severe atmospheric or chemical contamination. Regular acidic and caustic wet cleaning also with chemical cleaning agents. According to corrosivity category ² : • C5-1 (verv high)	 Drives in malting plants Wet areas in the beverage industry Conveyor belts in the food industry 	

1) Motors/brakemotors in degree of protection IP56 or IP66 are only available with OS2, OS3, or OS4 surface protection

2) To DIN EN ISO 12944-2 classification of ambient conditions

Special protection measures

Gearmotor output shafts can be treated with special optional protective measures for operation subject to severe environmental pollution or in particularly demanding applications.

Gear unit type	Measure	Protection principle	Suitable for
R, F, K, S, W BS.F202 - 602	FKM oil seal (Viton) ¹⁾	High quality material	Drives subject to chemical contamination
R, F, K, S, W	Surface coating of the contact surface of the oil seal	Protective layer	Severe environmental impact and in conjunction with FKM oil seal (Viton)
R, F, K, S, W	Stainless steel output shaft	Surface protection with high-quality material	Particularly demanding applications in terms of surface protection

1) For PS.F, PS.C and BS.F802 , FKM oil seals (Viton) are used as standard.

NOCO[®] fluid As standard, SEW-EURODRIVE supplies NOCO[®] fluid corrosion protection and lubricant with every hollow shaft gear unit. Use NOCO[®] fluid when installing hollow shaft gear units. Using this fluid can help prevent contact corrosion and makes it easier to disassemble the drive at a later time.

 $NOCO^{\$}$ fluid is also suitable for protecting machined metal surfaces that do not have corrosion protection, such as parts of shaft ends or flanges. You can order larger quantities of $NOCO^{\$}$ fluid from SEW-EURODRIVE.

NOCO[®] fluid is a food grade substance according to USDA-H1. You can tell that NOCO[®] fluid is a food grade oil by the USDA-H1 identification label on its packaging.

2.3 Extended storage of R, F, K, S, W gear units

Туре

You can also order gear units prepared for "extended storage." SEW-EURODRIVE recommends the "extended storage" type for storage periods longer than 9 months.

In this case, a VCI corrosion inhibitor (volatile corrosion inhibitor) is added to the lubricant in these gear units. Please note that this VCI anti-corrosion agent is only effective in a temperature range of -25 °C to +50 °C. The flange contact surfaces and shaft ends are also treated with an anti-corrosion agent. If not specified otherwise in your order, the gear unit will be supplied with OS1 surface protection. You can order OS2, OS3 or OS4 instead of OS1.

Surface protection	Suitable for
OS1	Low environmental impact
OS2	Medium environmental impact
OS3	High environmental impact
OS4	Very high environmental impact

INFORMATION

The gear units must remain tightly sealed until taken into operation to prevent the VCI corrosion protection agent from evaporating.

At the factory, the gear units are filled with oil to the appropriate level depending on the specified mounting position (M1 to M6). Check the oil level before you start operating the gear unit for the first time.

Storage conditions

Observe the storage conditions specified in the following table for extended storage:

Climate zone	Packaging ¹⁾	Storage location ²⁾	Storage duration
Temperate (Europe,	Packed in containers, with desiccant and moisture indicator sealed in the plastic wrap.	Under roof, protected against rain and snow, no shock loads.	Up to 3 years with regular checks of the packaging and moisture indicator (rel. humidity < 50%).
china and Russia, excluding tropical zones)	Open	Roofed, enclosed at constant temperature and atmospheric humidity (5 °C < 9 < 60°C, < 50% relative humidity). No sudden temperature fluctuations. Controlled ventilation with filter (free from dust and dirt). Protected against aggressive vapors and shocks.	2 years or more with regular inspections. Check for cleanliness and mechanical damage during inspection. Check corrosion protection.
Tropical (Asia, Africa, Central and South America,	Packed in containers, with desiccant and moisture indicator sealed in the plastic wrap. Protected against insect damage and mildew by chemical treatment.	Under roof, protected against rain and shocks.	Up to 3 years with regular checks of the packaging and moisture indicator (rel. humidity < 50%).
Australia, New Zealand excluding temperate zones)	Open	Roofed, enclosed at constant temperature and atmospheric humidity (5 $^{\circ}$ C < 9 < 50 $^{\circ}$ C, < 50% relative humidity). No sudden temperature fluctuations. Controlled ventilation with filter (free from dust and dirt). Protected against aggressive vapors and shocks. Protected against insect damage.	2 years or more with regular inspections. Check for cleanliness and mechanical damage during inspection. Check corrosion protection.

1) Packaging must be carried out by an experienced company using the packaging materials that have been explicitly specified for the particular application.

2) SEW-EURODRIVE recommends to store the gear units according to the mounting position.

2

2.4 General product description R, F, K, S, W gear units

Ambient temperature

Gear units and gearmotors from SEW-EURODRIVE can be operated in a wide ambient temperature range. The following standard temperature ranges are permitted for filling the gear units according to the lubricant table:

Gear unit	Filled with	Permitted standard temperature range
Helical, parallel shaft helical and helical-bevel gear units	CLP(CC) VG220	-10 °C to +40 °C
Helical-worm gear units	CLP(CC) VG680	0 °C to +40 °C
SPIROPLAN [®] gear units	CLP(SEW-PG) VG460	-10 °C to +40 °C

The rated data of the gear units and gearmotors specified in the catalog/price catalog refer to an ambient temperature of +25 °C.

Gear units and gearmotors from SEW-EURODRIVE can be operated outside the standard temperature range if project planning is adapted to ambient temperatures from as low as up to -40 °C in the intensive cooling range until up to +60 °C. Project planning must take special operating conditions into account and adapt the drive to the ambient conditions by selecting suitable lubricants and seals. This kind of project planning is generally recommended for increased ambient temperatures as of size 97 and for helical-worm gear units with small gear ratios. SEW-EURODRIVE will gladly perform this project planning for you.

If the drive is to be operated on a frequency inverter, you must also consider the project planning notes of the inverter and take into account the thermal effects of inverter operation.

Installation altitude Due to the low air density at high installation altitudes, heat dissipation on the surface of motors and gear units decreases. The rated data listed in the catalog/price catalog applies to an installation altitude of maximum 1000 m above sea level. Installation altitudes of more than 100 m asl must be taken into account for project planning of gear units and gearmotors.

Power and torque

The power and torque ratings listed in the catalogs refer to mounting position M1 and similar mounting positions in which the input stage is not completely submerged in oil. In addition, the gearmotors are assumed to be standard versions with standard lubrication and under normal ambient conditions.

Please note that the motor power shown in the selection tables for gearmotors is subject to selection. However, the output torque and the desired output speed are essential for the application and need to be checked.

Speeds The quoted output speeds of the gearmotors are recommended values. You can calculate the rated output speed based on the rated motor speed and the gear unit ratio. Please note that the actual output speed depends on the motor load and the supply system conditions.

Noise levels The noise levels of all SEW-EURODRIVE gear units, motors and gearmotors are well within the maximum permitted noise levels set forth in the VDI guideline 2159 for gear units and IEC/EN 60034 for motors.

Weights

Please note that all weights shown in the catalogs exclude the oil fill for the gear units and gearmotors. The weights vary according to gear unit type and gear unit size. The lubricant fill depends on the mounting position which means no universally applicable information can be given. Please refer to "Lubricants" in the "Design and Operating Notes" section for recommended lubricant fill quantities depending on the mounting position. For the exact weight, refer to the order confirmation.

Air admission and accessibility

The gearmotors/brakemotors must be mounted on the driven machine in such a way that both axially and radially there is enough space left for unimpeded air admission, for maintenance work on the brake and, if required, for the MOVIMOT[®] inverter. Please also refer to the notes in the motor dimension sheets.

Multi-stage gearmotors

You can achieve particularly low output speeds by using multi-stage gear units or multistage gearmotors. Such a setup requires a helical gear unit or gearmotor on the input end as a second gear unit.

When doing this, it is necessary to limit the motor power depending on the maximum permitted output torque of the gear unit.

Reduced backlash design

Helical, parallel shaft helical and helical-bevel gear units with reduced backlash are available as of gear unit size 37. The circumferential backlash of these gear units is considerably less than that of the standard versions so that positioning tasks can be solved with great precision. The circumferential backlash is specified in angular minutes ['] in the technical data. The circumferential backlash for the output shaft is specified without load (max. 1% of the rated output torque); the gear unit input end is blocked. For further information, refer to section "Reduced backlash gear units" on page 109.

RM gear units, RM gearmotors

RM gear units and RM gearmotors are a special type of helical gear units with an extended output bearing hub. They were designed especially for agitating applications and allow for high overhung and axial loads and bending moments. The other data are the same as for standard helical gear units and standard helical gearmotors.

SPIROPLAN[®] right-angle gearmotors

SPIROPLAN[®] right-angle gearmotors are robust, single- and two-stage right-angle gearmotors with SPIROPLAN[®] gearing. The difference to the helical-worm gear units is the material combination of the steel-on-steel gearing, the special tooth meshing relationships and the aluminum housing. As a result, SPIROPLAN[®] right-angle gearmotors are wear-free, very quiet and light.

The particularly short design and the aluminum housing make for very compact and lightweight drive solutions.

The wear-free gearing and the life-long lubrication facilitate long periods of maintenance-free operation. The oil filling being independent of the mounting position (except for SPRIOPLAN[®] W..37 in mounting position M4) makes any position possible for SPRIOPLAN[®] right-angle gearmotors without altering the quantity of oil. Identical hole spacing in the foot and face, as well as the equal shaft height to both, provides you with diverse mounting options.

Two different flange diameters are available. On request, SPIROPLAN[®] right-angle gearmotors can be equipped with a torque arm.

Input components

The following components on the input side are available for the gear units from SEW-EURODRIVE:

Input covers with input shaft extension, optionally with

- Centering shoulder
- Backstop
- Motor mounting platform
- Adapter
 - For mounting IEC or NEMA motors with the option of a backstop
 - For mounting servomotors with a square flange
 - With torque limiting safety couplings and speed or slip monitor
 - With hydraulic centrifugal coupling, also with disk brake or backstop
- **Swing base** A swing base is a drive unit consisting of helical-bevel gear unit, hydraulic centrifugal coupling and electric motor. The complete arrangement is mounted to a rigid mounting rail.

Motor swings are available with the following optional accessories:

- Torque arm
- Mechanical thermal monitoring unit
- · Contactless thermal monitoring unit

2.5 General product description BS.F, PS.F, PS.C gear units

Ambient temperature

Servo gear units can be operated at ambient temperatures between - 20 C and + 40 C. It is essential that you contact SEW-EURODRIVE if ambient temperatures exceed this temperature range.

Installation altitude Due to the low air density at high installation altitudes, heat dissipation on the surface of motors and gear units decreases. The rated data listed in the catalog/price catalog applies to an installation altitude of maximum 1000 m above sea level. Installation altitudes of more than 1000 m asl must be taken into account for project planning of gear units and gearmotors.

Power and torque

The power and torque values listed in the catalogs apply to normal environmental conditions.

Please note that the motor torques shown in the selection tables for gearmotors is subject to selection. However, the output torque and the desired output speed are essential for the application and need to be checked.

Noise levels The noise levels of all SEW servo gearmotors and servomotors are well within the maximum permitted noise levels laid down by the VDI guideline 2159 for gear units and EN 60034 for motors.

Heat dissipation and accessibility

Servo gearmotors and brakes can reach surface temperatures > 100 °C during operation. Make sure to maintain adequate distance from heat-sensitive components when installing gearmotors/geared brakemotors to the driven machine.

Direct motor The servo gearmotors from SEW-EURODRIVE make it possible to mount servo gear units directly to the synchronous servomotors from SEW-EURODRIVE without an adapter. These integrated servo gearmotors feature shaft-hub connections that are all positive and free from backlash.

Motor mounting with adapter

Use the modular motor adapters to connect all other commercial servomotors in a simple and time-efficient manner to the servo gear units from SEW-EURODRIVE.

Low backlash and positioning accuracy

BS.F and PS.F gear units ensure low backlash already for standard designs. The circumferential backlash can be further reduced for all types and even minimized for PS.F gear units. Circumferential backlash will remain constantly low for the entire gear unit life due to the wear-free operating performance and high-endurance design of the running gears.

The circumferential backlash is specified in angular minutes ['] in the technical data. The circumferential backlash for the output shaft is specified without load (max. 1% of the rated output torque); the gear unit input end is blocked. The dimension sheets for standard versions are applicable.

Extensive ratio range with fine graduation

All ratios from i=3 to i=100 are integers and finely graduated. This means that the gear units are especially suitable for use with controllers that require integer resolution ratios.

Reliability, long service life and low maintenance

The high reliability of servo gear units from SEW-EURODRIVE in the system is ensured by the use of high-strength materials, high-quality rolling bearings, long-lived oil seals and synthetic lubricants.

High overload capacity

Exactly matched components as well as backlash-free and positively connected drive elements ensure that highest torques can be transferred and that large axial and radial forces can be absorbed.

Torsionally rigid The special design of SEW-EURODRIVE servo gear units in conjunction with large shaft diameters ensures high torsional rigidity.

2.6 Explosion protection according to ATEX

- **Validity** EU directive 94/9/EC or ATEX lays down new regulations for explosion protection in all types of devices for the European market. This directive applies to gearmotors and motors as well. Since July 1, 2003, EU directive 94/9/EC has been applicable without restrictions to the use of gearmotors and motors within the European Union. Other European countries, such as Switzerland, have fallen in with this regulation since.
- **Scope** SEW-EURODRIVE now only supplies explosion-proof gear units in accordance with the corresponding ATEX directive. This also applies to options and accessories in explosion-proof design.

Depending on their features and dimensions, explosion-proof gear units are suitable for:

- Potentially explosive gas atmosphere, zone 1 or 2.
- Potentially explosive dust atmosphere, zone 21 or 22.

SEW-EURODRIVE offers gearmotors and motors of categories

- II2G
- 112D
- II3GD
- II3D

for use in zones 1, 21, 2 and 22.

Stand-alone gear units with components on the input side are available in the following categories:

- Gear units with adapters AQA, EBH, and EPH for use in zones 1, 21, 2 and 22
 - II2GD

Adapters AQH according to ATEX directive are not available.

Other The "Explosion-Proof Drives to EU Directive 94/9/EC" system description and the volume of the same name in the "Drive Engineering – Practical Implementation" series provide you with basic information about this topic.

Please refer to the "Explosion-Proof Drives" catalog and the "Variable Speed Gearmotors" catalog for detailed information on explosion-proof products from SEW-EURODRIVE.

3 Overview of Types and Unit Designation

3.1 Types and options of R, F, K, S, W gear units

Below an overview of unit designations for R, F, K, S, and W gear units and their options.

Helical gear units

Designation	
RX	Single-stage foot-mounted type
RXF	Single-stage B5 flange-mounted type
R	Foot-mounted type
RF	Foot and B5-flange mounted type
RF	B5 flange-mounted type
RZ	B14 flange-mounted type
RM	B5 flange-mounted type with extended bearing hub

Parallel shaft helical gear units

Designation	
F	Foot-mounted type
FAB	Foot-mounted, hollow shaft
FHB	Foot-mounted, hollow shaft with shrink disk
FVB	Foot-mounted, hollow shaft with splined hollow shaft to DIN 5480
FF	B5 flange-mounted type
FAF	B5 flange-mounted type and hollow shaft
FHF	B5 flange-mounted type and hollow shaft with shrink disk
FVF	B5 flange-mounted type and hollow shaft with splined hollow shaft to DIN 5480
FA	Hollow shaft
FH	Hollow shaft with shrink disk
FT	Hollow shaft with $\operatorname{TorqLOC}^{\textcircled{R}}$ hollow shaft mounting system
FV	Hollow shaft with splining to DIN 5480
FAZ	B14 flange-mounted type and hollow shaft
FHZ	B14 flange-mounted type and hollow shaft with shrink disk
FVZ	B14 flange-mounted type and hollow shaft with splined hollow shaft to DIN 5480

Helical-bevel gear units

Designation		
К	Foot-mounted	
KAB	Foot-mounted, hollow shaft	
KHB	Foot-mounted, hollow shaft with shrink disk	
KVB	Foot-mounted, hollow shaft with splined hollow shaft to DIN 5480	
KF	B5 flange-mounted	
KAF	B5 flange-mounted type and hollow shaft	
KHF	B5 flange-mounted type and hollow shaft with shrink disk	
KVF	B5 flange-mounted type and hollow shaft with splined hollow shaft to DIN 5480	
КА	Hollow shaft	
KH	Hollow shaft with shrink disk	
KT	Hollow shaft with $\operatorname{TorqLOC}^{\mathbb{R}}$ hollow shaft mounting system	
KV	Hollow shaft with splining to DIN 5480	
KAZ	B14 flange-mounted type and hollow shaft	
KHZ	B14 flange-mounted type and hollow shaft with shrink disk	
KVZ	B14 flange-mounted type and hollow shaft with splined hollow shaft to DIN 5480	

Helical-worm gear unit

Designation	
S	Foot-mounted
SF	B5 flange-mounted
SAF	B5 flange-mounted type and hollow shaft
SHF	B5 flange-mounted type and hollow shaft with shrink disk
SA	Hollow shaft
SH	Hollow shaft with shrink disk
ST	Hollow shaft with $TorqLOC^{ extsf{B}}$ hollow shaft mounting system
SAZ	B14 flange-mounted type and hollow shaft
SHZ	B14 flange-mounted type and hollow shaft with shrink disk

23

SPIROPLAN[®] gear units

Designation	
W	Foot-mounted
WF	Flange-mounted type
WAF	Flange-mounted type and hollow shaft
WA	Hollow shaft
WAB	Foot-mounted, hollow shaft
WHB	Foot-mounted, hollow shaft with shrink disk
WHF	Flange-mounted, hollow shaft with shrink disk
WH	Hollow shaft with shrink disk
WT	Hollow shaft with $\operatorname{TorqLOC}^{\mathbb{R}}$ hollow shaft mounting system

Options

R, F and K gear units:

Designation	
/R	Reduced backlash

K, S and W gear units:

Designation	
/Т	With torque arm

F gear units:

Designation	
/G	With rubber buffer

Condition monitoring

Designation	Option
/DUO	Diagnostic Unit Oil = Oil aging sensor
/DUV	Diagnostic Unit Vibration = Vibration sensor

INFORMATION

The types described in this section refer to CMP gearmotors from SEW-EURODRIVE. They also apply to gear units without motors.

Helical gearmotors

The following types of helical gearmotors are available:

RX.. CMP.. Foot-mounted single stage helical gear unit

R.. CMP..

RXF.. CMP.. Single-stage helical gearmotor in B5 flange-mounted design

R..F CMP.. Foot and B5 flange-mounted helical gearmotor

RF.. CMP.. B5 flange-mounted helical gearmotor

Foot-mounted helical gearmotor

RZ.. CMP.. B14 flange-mounted helical gearmotor

63260AXX

25

3

Parallel shaft helical gearmotors

The following types of parallel shaft helical gearmotors is available:

F.. CMP.. Foot-mounted parallel shaft helical gearmotor

FA..B CMP.. Foot-mounted parallel shaft helical gearmotor with hollow shaft

FV.B CMP. Foot-mounted parallel shaft gearmotor with hollow shaft and splining according to DIN 5480

FH..B CMP..

Foot-mounted parallel shaft helical gearmotor with hollow shaft and shrink disk

FF.. CMP.. B5 flange-mounted parallel shaft helical gearmotor

FAF.. CMP..

Parallel shaft helical gearmotor in B5 flange-mounted design with hollow shaft

FVF.. CMP..

Parallel shaft helical gearmotor in B5 flange-mounted design with hollow shaft and splining according to DIN 5480

63261AXX

Overview of Types and Unit Designation Types and options of R, F, K, S, W gear units

FHF.. CMP..

FA.. CMP..

B5 flange-mounted parallel shaft helical gearmotor with hollow shaft and shrink disk

3

Parallel shaft helical gearmotor with hollow shaft **FV.. CMP..**

Parallel shaft helical gearmotor with hollow shaft and splining according to DIN 5480

FH.. CMP..

Parallel shaft helical gearmotor with hollow shaft and shrink disk

FT.. CMP..

Parallel shaft helical gearmotor with hollow shaft and ${\rm TorqLOC}^{\textcircled{R}}$ hollow shaft mounting system

FAZ.. CMP..

B14 flange-mounted parallel shaft helical gearmotor with hollow shaft

FVZ.. CMP..

B14 flange-mounted parallel shaft helical gearmotor in B14 with hollow shaft and splining according to DIN 5480

FHZ.. CMP..

B14 flange-mounted parallel shaft helical gearmotor with hollow shaft and shrink disk

Helical-bevel gearmotors

The following types of helical-bevel gearmotors are available:

K.. CMP.. Foot-mounted helical-bevel gearmotor

KV..B CMP.. Foot-mounted helical-bevel gearmotor with hollow shaft and splining according to DIN 5480

Foot-mounted helical-bevel gearmotor with hollow shaft

КН..В СМР..

KA..B CMP..

Foot-mounted helical-bevel gearmotor with hollow shaft and shrink disk

KF.. CMP.. B5 flange-mounted helical-bevel gearmotor

KAF.. CMP..

B5 flange-mounted helical-bevel gearmotor with hollow shaft

KVF.. CMP..

B5 flange-mounted helical-bevel gearmotor with hollow shaft and splined hollow shaft to DIN 5480

63263AXX

KHF.. CMP.. B5 flange-mounted helical-bevel gearmotor with hollow shaft and shrink disk

KA.. CMP.. Helical-bevel gearmotor with hollow shaft

KV.. CMP.. Helical-bevel gearmotor with hollow shaft and splined hollow shaft to DIN 5480

KH.. CMP.. Helical-bevel gearmotor with hollow shaft and shrink disk

KT.. CMP.. Helical-bevel gearmotor with hollow shaft and $\text{TorqLOC}^{\textcircled{B}}$ hollow shaft mounting system

KAZ.. CMP..

B14 flange-mounted helical-bevel gearmotor with hollow shaft

KVZ.. CMP..

B14 flange-mounted helical-bevel gearmotor with hollow shaft and splined hollow shaft to DIN 5480

	Л
_	
	μ

63264AXX

KHZ.. CMP..

B14 flange-mounted helical-bevel gearmotor with hollow shaft and shrink disk

Helical-worm gearmotors

The following types of helical-worm gearmotors are available:

S.. CMP.. Foot-mounted helical-worm gearmotor

SF.. CMP.. B5 flange-mounted helical-worm gearmotor

SAF. CMP.. B5 flange-mounted helical-worm gearmotor with hollow shaft

SHF.. CMP..

B5 flange-mounted helical-worm gearmotor with hollow shaft and shrink disk

63265AXX

SA.. CMP.. Helical-worm gearmotor

Helical-worm gearmotor with hollow shaft

3

SH.. CMP..

Helical-worm gearmotor with hollow shaft and shrink disk

ST.. CMP..

Helical-worm gearmotor with hollow shaft and ${\rm TorqLOC}^{\textcircled{R}}$ hollow shaft mounting system

SAZ.. CMP.. B14 flange-mounted helical-worm gearmotor with hollow shaft

SHZ.. CMP..

B14 flange-mounted helical-worm gearmotor with hollow shaft and shrink disk

63266AXX

SPIROPLAN[®] gearmotors

The following types of SPIROPLAN[®] gearmotors are available:

663267AXX

3

Overview of Types and Unit Designation Types and options of R, F, K, S, W gear units

3.2 Types and options of BS.F, PS.F and PS.C gear units

Bs.F helical-bevel gear units

Designation	
BSF	Solid shaft without key
BSKF	Solid shaft with key
BSBF	Solid shaft with flange block shaft
BSHF	Hollow shaft with shrink disk
BSAF	Hollow shaft with keyway
BSKFB	Solid shaft with key and foot/front-end mounting
BSBFB	Solid shaft with flange block shaft and foot/front-end mounting
BSHFB	Hollow shaft with shrink disk and foot/front-end mounting
BSAFB	Hollow shaft with keyway and foot/front-end mounting

PS.F planetary gear units

Designation	
PSF	Solid shaft without key
PSKF	Solid shaft with key
PSBF	Solid shaft with flange block shaft

PS.C planetary gear units

Designation	
PSC	Solid shaft without key
PSKC	B5 output flange, solid shaft with key
PSCZ	B14 output flange, solid shaft
PSKCZ	B14 output flange, solid shaft with key

Options

BS.F gear units

Designation	
/R	Reduced backlash
/T	Torque arm
/I	Hollow shaft and shrink disk at the output end

PS.F gear units

Designation	
/R	Reduced backlash
/M	Minimized backlash

3

3

BS.F helical-bevel gearmotors

The following types of BS.F helical-bevel gear units are available:

Gearmotor with solid shaft, B5 output flange

BSKF.. CMP..

Gearmotor with solid shaft and key, B5 output flange

BSF..B CMP.. Gearmotor with solid shaft and front-end mounting

BSKF..B CMP.. Gearmotor with solid shaft, key and frontend mounting

BSBF.. CMP.. Gearmotor with flange block shaft, B5 output flange

BSBF..B CMP.. Gearmotor with flange block shaft and frontend mounting

BSHF.. CMP.. Gearmotor with hollow shaft and shrink disk, B5 output flange

BSHF..B CMP.. Gearmotor with hollow shaft, shrink disk and front-end mounting

63269AXX

BSHF./I CMP.. Gearmotor with hollow shaft and shrink disk at the output end

BSHF..B /I CMP.. Gearmotor with hollow shaft and shrink disk at the output end

BSAF.. CMP.. Gearmotor with hollow shaft and keyway, B5 output flange

BSAF..B CMP.. Gearmotor with hollow shaft and keyway, B5 output flange

63289AXX

PS.F planetary gearmotors

The following PS.F.. planetary gearmotor types are available:

PSF.. CMP.. Gearmotor with solid shaft, B5 output flange

PSKF.. CMP.. Gearmotor with solid shaft and key, B5 output flange

PSBF.. CMP.. Gearmotor with flange block shaft, B5 output flange

63271AXX

PS.C planetary gearmotors

The following types of PS.C.. planetary gear units are available:

PSC.. CMP.. Gearmotor with solid shaft, B5 output flange

PSKC.. CMP.. Gearmotor with solid shaft and key, B5 output flange

PSCZ.. CMP.. Gearmotor with solid shaft, B14 output flange

PSKCZ.. CMP.. Gearmotor with solid shaft and key, B14 output flange

63270AXX

37

3

3.3 Type designations of servo gearmotors

Example: Order code for PS.C.. servo gearmotors

62824axx

For example, a servo gearmotor with brake, manual brake release, positive temperature coefficient thermistor and plug connector has the following type designation:

3

3.4 Nameplate for servo gearmotors

Example: Nameplate for PS.C.. servo gearmotors

ſ	SEV/~[76646 Bruch	EURODR	IVE	CE	
	Typ PSC221/ Nr. 01.12345 Motor Mo 0 NN 60 Usys 2 Bremse 2 Getriebe Ma pk 10:1 Image: Stress of CLP 0	CMP40M/BP/AK0F 67890.0001.07 0,8Nm Io 000 r/min I _{max} 400 V Iso.Kl. 4 V 0,95Nm 37 Nm na pk IM MO PG220 0,061L	H/SB 1 0,95A P 6,0 A 155 (F) Gleichrichter 700/ne pk	3 ∼ IEC60034 lermanentmagnet IP 65 °C – 20+40 7000r/min kg 2,050	
	0199 081 0.13	Umrichterbetrieb	Ma	ade in Germany	
				62865a	de

Key

i		Gear unit reduction ratio	n _N	[rpm]	Rated speed
IM		Mounting position	Mo	[Nm]	Rated torque
IP		Degree of protection	I _o	[A]	Rated current
n _{epk}	[rpm]	Maximum permitted input speed	I _{max}	[A]	Maximum permitted current
n _{apk}	[rpm]	Maximum permitted output speed	f _N	[Hz]	Rated frequency
M _{apk}	[Nm]	Maximum permitted output torque	U _{max}	[V]	Maximum permitted voltage

3.5 Overview of servo gearmotors

Axially parallel gear units

Gear unit type		RX	R	F	PS.C	PS.F
For details, refer to		page 155	page 181	page 256	page 630	page 567
Technical data					5.	5
Peak torque	M _{apk} [Nm]	54-1150	46-4360	130-8860	37-427	26-4200
Max. continuous torque	M _{amax} [Nm]	36-830	31-4300	87-7840	29-347	20-3000
Max. input speed	n _{epk} [rpm	Up to 4500	Up to 4500	Up to 4500	Up to 7000	Up to 8000
Peak overhung load	F _{rapk} [N]	3970-30000	1220-32100	4500-65000	2000-11000	1900-83000
Gear ratio range	i	1.3-8.23	3.21-216.28	3.77-276.77	3-100	3-100
Reduced backlash option	/R	х	х	х	-	x
Minimum backlash option	/M	-	-	-	-	x
Mechanical data						
Hollow shaft		-	-	x	-	-
Flange-mounting		х	х	x	х	x
Foot-mounting		х	х	-	-	-
Flange block		-	-	-	-	x
B5 flange		х	х	х	x	x
B14 flange		-	x	х	x	-

Right-angle gear units

Gear unit type		К	S	W	BS.F
For details, refer to		page 354	page 440	page 488	page 502
Technical data				Contraction of the second	Contraction
Peak torque	M _{apk} [Nm]	187-9090	60-655	91-270	51-1910
Max. continuous torque	M _{amax} [Nm]	125-8000	43-480	70-180	40-1500
Max. input speed	n _{epk} rpm	4500	4500	4500	4500
Peak overhung load	F _{rapk} [N]	5140-65000	300-12000	2950-7600	2380-36000
Gear ratio range	i	3.98-176.05	6.8-75.06	3.2-74.98	3-40
Reduced backlash option	/R	x	х	-	x
Minimum backlash option	/M	-	-	-	-
Mechanical data					
Hollow shaft		х	х	х	x
Flange-mounting		x	х	х	x
Foot-mounting		х	х	х	x
Flange block		-	-	-	x
B5 flange		х	х	х	x
B14 flange		x	x	-	-

For information on all available options and variants, refer to page 22 et seq.

4 Project Planning Notes for Servo Gearmotors

4.1 Additional documentation

In addition to the information in this publication, SEW-EURODRIVE offers extensive documentation covering the entire topic of electrical drive engineering. These are mainly the publications in the "Drive Engineering Practical Implementation" series as well as the manuals and catalogs for electronically controlled drives.

You will find additional links to a wide selection of our documentation in many languages for download on the SEW-EURODRIVE homepage (http://www.sew-eurodrive.com). The list below includes other documents that are of interest in terms of project planning. You can order these publications from SEW-EURODRIVE.

Technical data for motors and gear units

The following documents are available from SEW-EURODRIVE in addition to this "Synchronous Servo Gearmotors" catalog:

- "Synchronous Servomotors" catalog/price catalog
- "Servo Gear Units" price catalog/catalog
- "Gear Units" price catalog/catalog
- AC Motors Inverter Assignments and Characteristic Curves" manual

Drive Engineering Practical Implementation

- Project Planning for Drives
- Controlled AC Drives
- SEW encoder systems
- Servo technology
- EMC in Drive Engineering
- Explosion-Proof Drives to EU Directive 94/9/EC
- SEW Disk Brakes

Electronics documentation

- MOVIDRIVE[®] MDX60/61B system manual
- MOVIAXIS[®] MX system manual

Mechanical brakes

- "Synchronous Servomotors" catalog/price catalog
- "Brakes and Accessories" manual

4.2 Data for drive and gear unit selection

The data of the application must be known for projecting a drive. The abbreviations used for project planning are summarized in the following table:

Designation	Meaning	Unit			
φ	Circumferential backlash	`			
η	Gear unit efficiency for Mapk				
a, b, f	Gear unit constants as regards the overhung load conversion	mm			
с	Gear unit constants as regards the overhung load conversion	Nmm			
a ₀ , a ₁ , a ₂	Gear unit constants as regards the rise in temperature in the gear unit				
F _A	Axial load (tension and compression) on the output shaft	N			
f _k	Speed ratio				
F _R	Overhung load on the output shaft	N			
F _{Rapk}	Maximum permitted overhung load at the output shaft for short-time duty (load application point is the middle of the shaft end)	Ν			
F _{Ramax}	Maximum permitted overhung load at the output shaft for continuous duty (load application point is the middle of the shaft end)	Ν			
F _{Repk}	Maximum permitted overhung load at the input shaft for short-time duty (load application point is the middle of the shaft end)	N			
F _{Remax}	Maximum permitted overhung load at the input shaft for continuous duty (load application point is the middle of the shaft end)	Ν			
н	Installation altitude	m above sea level			
I ₀	Current consumption of the motor at M ₀	А			
I _{max}	Maximum permitted motor current (root-mean-square value)	А			
Ins. cl.	Thermal classification of the motor				
i	Gear unit reduction ratio				
ІМ	Mounting position of the gear unit (international mounting position) M1 - M6				
IP	Degree of protection according to IEC60034-5				
J _A	Mass moment of inertia of the adapter	kgm ²			
J _G	Mass moment of inertia of the gear unit	kgm ²			
J _{ext}	Mass moment of inertia (external) reduced on motor shaft	kgm ²			
J _{Mot}	Mass moment of inertia of the motor	kgm ²			
JL	Mass moment of inertia of the load	kgm ²			
k	Inertia ratio J _{ext} / / J _{Mot}				
1	Length of output shaft	mm			
M ₁ - M _n	Output torque in time period t ₁ to t _n	Nm			
Mo	Thermally permitted output torque of the motor in continuous duty at low speed (not to be confused with standstill torque)	Nm			
Ma ^{DYN}	Dynamic output torque assumed for the drive in project planning	Nm			
M _{aeff}	Effective torque for component testing calculated in project planning	Nm			
M _{akub}	Effective torque for bearing testing calculated in project planning	Nm			
M _{amax}	Maximum permitted output torque for continuous duty	Nm			
M _{apk}	Maximum permitted torque for short-time duty	Nm			
M _{aNOTAUS}	Maximum permitted emergency stop torque, max. 1000 emergency stops	Nm			
M _{ath}	Effective torque for thermal testing calculated in project planning	Nm			
M _B	Rated brake torque	Nm			
M _{pk}	Dynamic limit torque of the servomotor	Nm			
	Table continued on next page.				

Designation	Meaning	Unit
M _{eff}	Effective torque requirement (in relation to the motor)	Nm
M _{max}	Maximum output torque assumed for the drive in project planning	Nm
ML	Mounting location (UL)	
n _{apk}	Maximum permitted output speed for short-time duty	1/min
n _{epk}	Maximum permitted input speed for short-time duty	1/min
n _{em}	Mean input speed	1/min
n _{am}	Mean output speed	1/min
n _{ak}	Breakpoint speed (output)	1/min
n _N	Rated speed	1/min
n ₁ - n _n	Output speed in time period t ₁ to t _n	1/min
n _{etn_pk}	Maximum input speed in section	1/min
P _{Br}	Braking power	W
P _{Br_pk}	Peak braking power	W
P _{Br_eff}	Effective braking power	W
P _{Br_tn}	Braking power in section t _n	W
S,% cdf	Duty type and cyclic duration factor (cdf) or exact load cycle can be entered.	s
t ₁ - t _n	Time period 1 to n	s
tz	Cycle time	s
T _{Amb}	Ambient temperature	°C
U _{sys}	System voltage, voltage of the supplying inverter	V
U _{Br}	Operating voltage of the brake	V
x	Distance between overhung load application point and shaft shoulder	mm

Determining the application data

It is necessary to have data on the machine to be driven (mass, speed, setting range, etc.) to project the drive correctly.

These data help determine the required power, torque and speed. Refer to the SEW publication "Drive Engineering Practical Implementation / Drive Planning" or the SEW project planning tool SEW Workbench for assistance.

Selecting the correct drive

The appropriate drive can be selected once the power and speed of the drive have been calculated and with regard to mechanical requirements.

4.3 Project planning procedure

The following flowcharts show a schematic view of the project planning procedure of a servo gear unit for a positioning drive in S3 duty cycle.

Project planning procedure part 1, servo gear units

62893aen

* For thermal project planning of R, F, K, S, W gear units, please contact SEW-EURODRIVE.

Project planning procedure part 2, servo gear units

62783aen

4

Project planning procedure part 3, servomotors

4

Project planning procedure part 4, servomotors

62890aen

47

* $\mathsf{MOVIDRIVE}^{\texttt{R}}$ system manual, $\mathsf{MOVIAXIS}^{\texttt{R}}$ system manual

4.4 Project planning notes for R, F, K, S, W gear units

Efficiency of the gear units

General information	The efficiency of gear units is mainly determined by the gearing and bearing friction. Keep in mind that the starting efficiency of a gear unit is always less than its efficiency at operating speed. This applies in particular to helical-worm and SPIROPLAN [®] right-angle gearmotors.
R, F, K gear units	The efficiency of helical, parallel shaft and helical-bevel gear units varies with the number of gear stages, between 96% (3-stage), 97% (2-stage) and 98 % (1-stage).
S and W gear units	The gearing in helical-worm and SPIROPLAN [®] gear units produces a high proportion of sliding friction. As a result, these gear units have higher gearing losses than R, F or K gear units and thus be less efficient.
	The efficiency depends on the following factors:
	 Gear ratio of the helical-worm or SPIROPLAN[®] stage
	Input speed
	Gear unit temperature
	Helical-worm gear units from SEW-EURODRIVE are helical gear/worm combinations that are significantly more efficient than plain worm gear units.
	The efficiency may reach η < 0.5 if the helical-worm gear stage has a very high gear ratio.
	SPIROPLAN [®] gear units W37 and W47 from SEW-EURODRIVE have an efficiency of more than 90%, which drops only slightly even with large gear unit ratios.
Self-locking	Retrodriving torques on helical-worm or SPIROPLAN [®] gear units produce an efficiency of η ' = 2 - 1/ η , which is significantly less favorable than the forward efficiency η . Helical-worm or SPIROPLAN [®] gear units are self-locking if the forward efficiency $\eta \leq 0.5$. Some SPIROPLAN [®] gear units are dynamically self-locking. Contact SEW-EURODRIVE if you want to make technical use of the braking effect of self-locking characteristics.
	INFORMATION
i	Note that the self-locking effect of helical-worm and SPIROPLAN [®] gear units is not permitted as the sole safety function for hoists.

Run-in phase The tooth flanks of new helical-worm and SPIROPLAN[®] gear units are not yet completely smooth. This fact results in a greater friction angle and less efficiency than during later operation. This effect intensifies with increasing gear unit ratio. Subtract the following values from the listed efficiency during the running-in phase:

	Worm		
	i range	η reduction	
1-start	ca. 50 - 280	ca. 12%	
2-start	ca. 20 - 75	ca. 6%	
3-start	ca. 20 - 90	ca. 3%	
5-start	ca. 6 - 25	ca. 3%	
6-start	ca. 7 - 25	ca. 2%	

SPIROPLAN [®] W	
i range	η reduction
ca. 30 - 70	ca. 8%
ca. 10 - 30	ca. 5%
ca. 3 - 10	ca. 3%

The run-in phase usually lasts 48 hours. Helical-worm and SPRIOPLAN[®] gear units achieve their listed rated efficiency values when:

- The gear unit has been completely run-in,
- The gear unit has reached nominal operating temperature,
- The recommended lubricant has been filled in, and
- The gear unit is operating in the rated load range.

Churning losses In certain gear unit mounting positions (see chapter "Gear Unit Mounting Positions"), the first gearing stage is completely immersed in the lubricant. When the circumferential velocity of the input stage is high, considerable churning losses occur in larger gear units that must be taken into account. Contact SEW-EURODRIVE if you wish to use gear units of this type.

To reduce churning losses to a minimum, use gear units in M1 mounting position.

Overhung and axial loads

Determining overhung loads

An important factor for determining the resulting overhung load is the type of transmission element mounted to the shaft end. The following transmission element factors f_Z have to be considered for various transmission elements.

Transmission element	Transmission element factor f _Z	Comments
Gears	1.15	< 17 teeth
Chain sprockets	1.40	< 13 teeth
Chain sprockets	1.25	< 20 teeth
Narrow V-belt pulleys	1.75	Influence of the pre-tensioning
Flat belt pulleys	2.50	Influence of the pre-tensioning
Toothed belt pulleys	2.00 - 2.50	Influence of the pre-tensioning
Gear rack pinion, prestressed	2.00	Influence of the pre-tensioning
Gear rack pinion, not prestressed	1.15	< 17 teeth

Permitted overhung load

The basis for determining the permitted overhung loads is the computation of the rated bearing service life L_{10h} of the rolling bearings (according to ISO 281).

For special operating conditions, the permitted overhung loads can be determined with regard to the modified service life L_{na} on request.

	INFORMATION
i	The values refer to force applied to the center of the shaft end (in right-angle gear units as viewed onto drive end). The values for the force application angle α and direction of rotation are based on the most unfavorable conditions.

	INFORMATION
	Reduction of overhung loads
İ	 Only 50% of the F_{Ramax} and F_{Rapk} values specified in the selection tables are permitted in mounting positions M1 and M3 with wall attachment on the front face for K and S gear units.
	 Helical-bevel gearmotors K167 and K187 in mounting positions M1 to M4: A maximum of 50% of the overhung load F_{Ramax} specified in the selection tables in the case of gear unit mounting other than as shown in the mounting position sheets.
	 Foot and flange-mounted helical gearmotors (RF): A maximum of 50% of the overhung load F_{Ramax} specified in the selection tables in the case of torque trans- mission via the flange mounting.

Higher permitted overhung loads
 Exactly considering the force application angle α and the direction of rotation makes it possible to achieve a higher overhung load than listed in the selection tables.
 Higher output shaft loads are permitted if heavy duty bearings are installed, especially with R, F and K gear units.

Contact SEW-EURODRIVE in such cases.

Definition of force application point

The force application is defined according to the following figure:

Permitted axial loads

If there is no overhung load, then an axial force F_A (tension or compression) amounting to 50% of the overhung load given in the selection tables is permitted. This condition applies to the following gearmotors:

- Helical gearmotors except for R..137... to R..167...
- · Parallel shaft and helical-bevel gearmotors with solid shaft except for F97...
- Helical-worm gearmotors with solid shaft

	INFORMATION
i	Contact SEW-EURODRIVE for all other types of gear units and in the event of signifi- cantly greater axial loads or combinations of overhung load and axial load.

Output end: Overhung load conversion for offcenter force application The permitted overhung loads F_{Ramax} and F_{Rapk} listed in the data tables apply to force application at I / 2 (solid shaft) or for force application at the shaft end face (hollow shaft). If the distance between the force application point an the gear unit is different, the overhung loads must be determined anew according to the project planning procedure page 44 .

The following conditions must be met:

$$F_R \leq F_{Ra\max} \cdot \frac{a}{b+x} [N] \qquad F_R \leq \frac{c}{f+x} [N]$$

F_{Ramax} = Permitted overhung load [N]

- x = Distance from the shaft shoulder to the force application point in [mm]
- a, b, f = Gear unit constant for overhung load conversion [mm]

= Gear unit constant for overhung load conversion [Nmm]

63215axx

51

С

Gear unit constants for overhung load conversion

Gear unit type	a mm	b mm	c Nmm	f mm	d mm	l mm
RX57 RX67 RX77 RX87 RX97 RX107	43.5 52.5 60.5 73.5 86.5 102.5	23.5 27.5 30.5 33.5 36.5 42.5	$\begin{array}{c} 1.51 \times 10^5 \\ 2.42 \times 10^5 \\ 1.95 \times 10^5 \\ 7.69 \times 10^5 \\ 1.43 \times 10^6 \\ 2.47 \times 10^6 \end{array}$	34.2 39.7 0 48.9 53.9 62.3	20 25 30 40 50 60	40 50 60 80 100 120
R07 R17 R27 R37 R47 R57 R67 R77 R87 R97 R107 R107 R137 R147 R167	72.0 88.5 106.5 118 137 147.5 168.5 173.7 216.7 255.5 285.5 343.5 402 450	52.0 68.5 81.5 93 107 112.5 133.5 133.7 166.7 195.5 215.5 215.5 258.5 297 345	$\begin{array}{c} 4.67 \times 10^4 \\ 6.527 \times 10^4 \\ 1.56 \times 10^5 \\ 1.24 \times 10^5 \\ 2.44 \times 10^5 \\ 3.77 \times 10^5 \\ 2.65 \times 10^5 \\ 3.97 \times 10^5 \\ 8.47 \times 10^5 \\ 1.06 \times 10^6 \\ 2.06 \times 10^6 \\ 4.58 \times 10^6 \\ 8.65 \times 10^6 \\ 1.26 \times 10^7 \end{array}$	11 17 11.8 0 15 18 0 0 0 0 0 0 0 0 33 0	20 20 25 30 35 40 50 60 70 90 110 120	40 40 50 50 60 70 70 80 100 120 140 170 210 210
F27 F37 F47 F57 F67 F77 F87 F97 F107 F127 F157	109.5 123.5 153.5 170.7 181.3 215.8 263 350 373.5 442.5 512	84.5 98.5 123.5 135.7 141.3 165.8 203 280 288.5 337.5 407	$\begin{array}{c} 1.13 \times 10^5 \\ 1.07 \times 10^5 \\ 1.40 \times 10^5 \\ 2.70 \times 10^5 \\ 4.12 \times 10^5 \\ 7.87 \times 10^5 \\ 1.06 \times 10^6 \\ 2.09 \times 10^6 \\ 4.23 \times 10^6 \\ 9.45 \times 10^6 \\ 1.05 \times 10^7 \end{array}$		25 25 30 35 40 50 60 70 90 110 120	50 50 60 70 80 100 120 140 170 210 210
K37 K47 K57 K67 K77 K87 K97 K107 K127 K157 K167 K187	123.5 153.5 169.7 181.3 215.8 252 319 373.5 443.5 509 621.5 720.5	98.5 123.5 134.7 141.3 165.8 192 249 288.5 338.5 404 496.5 560.5	$\begin{array}{c} 1.30 \times 10^5 \\ 1.40 \times 10^5 \\ 2.70 \times 10^5 \\ 4.12 \times 10^5 \\ 7.69 \times 10^5 \\ 1.64 \times 10^6 \\ 2.80 \times 10^6 \\ 5.53 \times 10^6 \\ 8.31 \times 10^6 \\ 1.18 \times 10^7 \\ 1.88 \times 10^7 \\ 3.04 \times 10^7 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25 30 35 40 50 60 70 90 110 120 160 190	50 60 70 80 100 120 140 170 210 210 250 320
W10 W20 W30 W37 W47	84.8 98.5 109.5 121.1 145.5	64.8 78.5 89.5 101.1 115.5	$\begin{array}{c} 3.6\times10^{4}\\ 4.4\times10^{4}\\ 6.0\times10^{4}\\ 6.95\xi10^{4}\\ 4.26x10^{5} \end{array}$	0 0 0 35.6	16 20 20 20 30	40 40 40 40 60
S37 S47 S57 S67 S77 S87 S97	118.5 130 150 184 224 281.5 326.3	98.5 105 120 149 179 221.5 256.3	$\begin{array}{c} 6.0\times10^4\\ 1.33\times10^5\\ 2.14\times10^5\\ 3.04\times10^5\\ 5.26\times10^5\\ 1.68\times10^6\\ 2.54\times10^6\\ \end{array}$	0 0 0 0 0 0 0	20 25 30 35 45 60 70	40 50 60 70 90 120 140

Values for types not listed in the table are available on request.

4.5 Project planning notes for BS.F, PS.F, PS.C gear units

Efficiency level of gear units

General information	The efficiency of gear units is mainly determined by the gearing and bearing friction. Keep in mind that the starting efficiency of a gear unit is always less than its efficiency at operating speed.
BS.F gear units	The efficiency of BS.F gear units is up to 94% (2-stage).
PS.F, PS.C gear units	The efficiency of planetary gear units varies with the number of gear stages, between 98% (2-stage) and 99% (1-stage).

	INFORMATION
i	For PS.F gear units with circumferential backlash option "M" used in S1 duty cycle, please contact SEW-EURODRIVE.

	INFORMATION
i	When input and output elements are mounted on servo gear units , the shaft shoulder can be used as a stop for transmission elements (belt pulley, pinion gear, etc.).

Overhung and axial loads

Overhung load calculation

An important factor for determining the resulting overhung load is the type of transmission element mounted to the shaft end. The following transmission element factors f_Z also have to be considered for various transmission elements according to the following formula:

 $\mathbf{f}_{\mathsf{Z}} = \mathbf{f}_{\mathsf{Z}1} \times \mathbf{f}_{\mathsf{Z}2}$

Transmission element	Transmission element fac- tor f _{Z1}	Comments
Gears	1.15	< 17 teeth
Chain sprockets	1.40	< 13 teeth
Chain sprockets	1.25	< 20 teeth
Narrow V-belt pulleys	1.75	Influence of the pre-tensioning
Flat belt pulleys	2.50	Influence of the pre-tensioning
Toothed belt pulleys	2.00 - 2.50	Influence of the pre-tensioning
Gear rack pinion, pre-tensioned	2.00	Influence of the pre-tensioning
Gear rack pinion, not pre- tensioned	1.15	< 17 teeth

INFORMATION

Factor f_{Z2} only applies to helical output elements.

Helical output elements			
Gear unit	Helix angle $\beta^{1)}$ ²⁾	f _{Z2}	
BS.F502-802	≤ 11 °	1.00	
PS.F621-922, PSBF321-521 PS.C221 - PS.C622	20 °	1.20	

1) For 11 ° < β < 20 °, f_Z must be interpolated linearly.

2) For helix angles > 20 °, please contact SEW-EURODRIVE.

Permitted overhung load

The basis for determining the permitted overhung loads is the computation of the rated bearing service life L_{H10} of the rolling bearings (according to ISO 281).

For special operating conditions, the permitted overhung loads can be determined with regard to the modified bearing service life L_{na} on request.

	INFORMATION
i	The values refer to force applied to the center of the shaft end (in right-angle gear units as viewed onto drive end). The values for the force application angle α and direction of rotation are based on the most unfavorable conditions.
	INFORMATION

Higher permitted overhung loads

Exactly considering the force application angle α and the direction of rotation makes it possible to achieve a higher overhung load than listed in the selection tables. Contact SEW-EURODRIVE in such cases.

Definition of force application point

The force application is defined according to the following figure:

Permitted axial loads

If there is no overhung load, then an axial force F_A (tension or compression) amounting to 50% of the overhung load given in the selection tables is permitted.

Output end: Overhung load conversion for offcenter force application The permitted overhung loads F_{Ramax} and F_{Rapk} listed in the data tables apply to force application at I / 2 (solid shaft) or for force application at the shaft end face (hollow shaft, flange block). If the distance between the force application point an the gear unit is different, the overhung loads must be determined anew according to the project planning procedure page 44.

The following conditions must be met:

$$F_R \leq F_{Ramax} \cdot \frac{a}{b+x} [N] \qquad F_R \leq \frac{c}{f+x} [N]$$

F_{Ramax} = Permitted overhung load [N]

х

= Distance from the shaft shoulder to the force application point in [mm]

a, b, f = Gear unit constant for overhung load conversion [mm]

c = Gear unit constant for overhung load conversion [Nmm]

63215axx

63102axx

Gear unit constants for overhung load conversion

Gear unit	a mm	b mm	c Nmm	f mm	d mm	l mm
BSF / BSKF202	113.1	95.6	$7.35 imes 10^4$	0	20	35
BSHF / BSAF202	116.6	116.6				
BSBF202	101.5	101.5				
BSF / BSKF302	122.6	104.6	$8.61 imes 10^4$	0	22	36
BSHF / BSAF302	126.6	126.6				
BSBF302	111.0	111.0				
BSF / BSKF402	152.2	123.2	2.56×10^{5}	0	32	58
BSHF / BSAF402	143.7	143.7				
BSBF402	132.0	132.0				
BSF / BSKF502	175.4	134.4	4.92×10^{5}	0	40	82
BSHF / BSAF502	162.4	162.4				
BSBF502	145.3	145.3				
BSF / BSKF602	195.9	154.9	$9.84 imes 10^5$	0	55	82
BSHF / BSAF602	189.9	189.9				
BSBF602	170.8	170.8				
BSF / BSKF802	242.7	190.2	$1.89 imes 10^6$	0	75	105
BSHF / BSAF802	243.2	243.2				
BSBF802	206.0	206.0				

Gear unit	а	b	С	f	d	I
	mm	mm	Nmm	mm	mm	mm
PSF / PSKF121/122	47.6	36.6	2.08×10^4	0	14	22
PSF / PSKF221/222	53.6	39.6	2.41×10^4	0	16	28
PSBF221/222	64.1	64.1				
PSF / PSKF321/322	65.0	47.0	7.97×10^4	0	22	36
PSBF321/322	72.5	72.5				
PSF / PSKF521/522	83.1	54.1	2.52×10^{5}	0	32	58
PSBF521/522	87.5	87.5				
PSF / PSKF621/622	113.6	72.3	5.48×10^{5}	0	40	82
PSBF621/622	105.0	105.0				
PSF / PSKF721/722	126.6	85.6	1.42×10^{6}	0	55	82
PSBF721/722	138.5	138.5				
PSF / PSKF821/822	153.2	100.7	3.21×10^{6}	0	75	105
PSBF821/822	156.0	156.0				
PSF / PSKF921/922	170.7	105.7	5.30×10^{6}	0	85	130

Gear unit	а	b	с	f	d	I	
	mm	mm	Nmm	mm	mm	mm	
PS.C221/222	57	43	$3.41 imes 10^4$	0	16	28	
PS.C321/322	63.5	45.5	$7.55 imes 10^4$	0	22	36	
PS.C521/522	95.5	66.5	$2.13 imes 10^5$	0	32	58	
PS.C621/622	107.5	66.5	$3.68 imes 10^5$	0	40	82	

Values for types not listed in the table are available on request.

4.6 Project planning example Gantry with servo drives

X-axis planning (travel axis)

61220axx

Reference data:

- Total moved mass: m_L = 50 kg
- Diameter of the belt pulley: d₀ = 75 mm
- Friction coefficient of the axis: $\mu = 0.01$
- Traveling velocity: v_{max} = 2 m/s
- Maximum occurring acceleration/deceleration: a_{max} = 10 m/s²
- Cycle time: $t_7 = 3 s$
- Rest period: t_p = 1.8 s
- Load efficiency: η_L= 0.9
- Mounting position of the gear unit: IM = M1

For the drive, a PC.C gear unit is designed to be mounted directly to a CMP servomotor. The overhung load is to act on the shaft center. Power is transmitted via a belt pulley.

Travel sections

Acceleration time in travel section 1, deceleration time in travel section 3

$$t_1 = t_3 = \frac{v_{max}}{a_{max}} = \frac{2 m/s}{10 m/s^2} = 0.2 s$$

Travel time for constant travel in travel section 2

$$t_2 = t_z - t_p - t_1 - t_3$$

$$t_2 = 3 s - 1.8 s - 0.2 s - 0.2 s$$

$$t_2 = 0.8s$$

M_{stat} for all travel sections

$$M_{stat} = \frac{(m \cdot g \cdot \mu) \cdot \frac{d_0}{2}}{\eta_L}$$
$$M_{stat} = \frac{50 kg \cdot 9.81 \frac{m}{s^2} \cdot 0.01 \cdot \frac{0.075m}{2}}{0.9}$$
$$M_{stat} = 0.2043 Nm$$

M_{dyn} during acceleration in travel section 1

$$M_{dym} = \frac{(m \cdot a) \cdot \frac{d_0}{2}}{\eta_L}$$
$$M_{dym} = \frac{50 kg \cdot 10 \frac{m}{s^2} \cdot \frac{0.075m}{2}}{0.9}$$
$$M_{dym} = 20.83 Nm$$

M_{dvn} during deceleration in travel section 3

$$M_{dym} = m \cdot a \cdot \frac{d_0}{2} \cdot \eta_L$$

$$M_{dym} = 50 kg \cdot (-10 \frac{m}{s^2}) \cdot \frac{0.075m}{2} \cdot 0.9$$

$$M_{dym} = -16.875 Nm$$

M_{max} during acceleration in travel section 1

$$M_{\text{max}} = M_{stat} + M_{dyn1}$$

 $M_{\text{max}} = 0.2043 Nm + 20.8333 Nm$
 $M_{\text{max}} = 21.04 Nm$

M_{max} during deceleration in travel section 3

$$M_{\text{max}} = M_{stat} + M_{dyn3}$$
$$M_{\text{max}} = 0.2043 Nm + (-16.87Nm)$$
$$M_{\text{max}} = -16.6657 Nm$$

Output speed

$$n_{a\max} = \frac{v_{\max}}{d_0 \cdot \pi} \cdot 60$$
$$n_{a\max} = \frac{2\frac{m}{s}}{0.075m \cdot \pi} \cdot 60$$
$$n_{a\max} = 509.295\frac{1}{\min}$$

Gear ratio including 10 % motor speed reserve n_N = 4500 rpm is an assumption

$$i = \frac{n_N \cdot 0.9}{n_{a \max}}$$
$$i = \frac{4500 \frac{1}{\min} \cdot 0.9}{509.295 \frac{1}{\min}}$$
$$i = 7.95$$

Maximum input speed

$$n_{\max} = n_{a\max} \cdot i$$
$$n_{\max} = 509.295 \frac{1}{\min} \cdot 7$$
$$n_{\max} = 3565.065 \frac{1}{\min}$$

Servo gear unit project planning

Project planning follows the project planning procedure on page 44 et seq.

The gear unit is selected on the basis of the table below:

	i	M _{amax} Nm	M _{apk} Nm	M _{aNotaus} Nm	n _{ak} 1/min	J _G 10 ⁻⁴ kgm²	с _т PSC Nm/'	F _{Ra} PSC N	F _{Rapk} PSC N
PSC221	3	29	40	60	1500	0.172	3.46	1170	2000
	5	34	42	63	720	0.0578	3.44	1390	2000
公1	7	32	39	59	800	0.03	3.28	1550	2000
S.	10	30	37	56	700	0.0144	2.92	1750	2000

				M1;M3;M5-6 M2 M4							φ		
		n _{epk}	η	a ₀	a ₁	a ₂	a ₀	a ₁	a ₂	a ₀	a ₁	a ₂	
	i	1/min	%										•
DSC221	3	7000	99	101.00	-0.093	0	106.00	-0.104	0	109.00	-0.110	0	10
F30221	5	7000	99	160.00	-0.181	0	163.00	-0.190	0	167.00	-0.200	0	10
L 1	7	7000	99	186.00	-0.257	0	187.00	-0.264	0	186.00	-0.267	0	10
	10	7000	99	158.00	-0.178	0	161.00	-0.184	0	164.00	-0.194	0	10

Selection condition:

 $M_{\max} \leq M_{apk}$

21.04 Nm ≤ 39 Nm

 $n_{\max} \leq n_{epk}$

$$3565 \frac{1}{\min} \le 7000 \frac{1}{\min}$$

Condition is fulfilled.

Mean output speed

$$n_{am} = \frac{n_{1} \cdot t_{1} + \dots + \dots n_{n} \cdot t_{n}}{t_{1} + \dots + \dots t_{n}}$$

$$n_{am} = \frac{\frac{509.295 \frac{1}{\min}}{2} \cdot 0.2s + 509.295 \frac{1}{\min} \cdot 0.8s + \frac{509.295 \frac{1}{\min}}{2} \cdot 0.2s}{0.2s + 0.8s + 0.2s + 1.8s}$$

$$n_{am} = 169.765 \frac{1}{\min}$$

Selection condition:

$$n_{am} \le n_{ak}$$

$$169.765 \frac{1}{\min} \le 809 \frac{1}{\min}$$

Condition is fulfilled.

Effective torque of servo gear unit

$$\begin{split} M_{aeff} &= \sqrt[8]{\frac{n_{1} \cdot t_{1} \cdot |M_{1}|^{8} + \dots + \dots n_{n} \cdot t_{n} \cdot |M_{n}|^{8}}{n_{1} \cdot t_{1} + \dots + n_{n} \cdot t_{n}}} \\ M_{aeff} &= \sqrt[8]{\frac{\frac{509.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |21.04Nm|^{8} + 509.295 \frac{1}{\min} \cdot 0.8s \cdot |0.2043Nm|^{8} + \frac{506.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |-16.67Nm|^{8}}}{0.2s \cdot 254.64 \frac{1}{\min} + 0.8s \cdot 509.295 \frac{1}{\min} + 0.2s \cdot 254.64 \frac{1}{\min}}{M_{aeff}} = 16.065Nm \end{split}$$

Selection condition:

 $M_{aeff} \le M_{a \max}$ 16.065 $Nm \le 32Nm$

Condition is fulfilled.

4

Thermal torque of servo gear unit

$$M_{ath} = \sqrt[1]{2} \frac{\left[\frac{n_{1} \cdot t_{1} \cdot |M_{1}|^{12} + ... + n_{n} \cdot t_{n} \cdot |M_{n}|^{12}}{n_{1} \cdot t_{1} + ... + n_{n} \cdot t_{n}}}{\left[\frac{509.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |21.04Nm|^{12} + 509.295 \frac{1}{\min} \cdot 0.8s \cdot |0.2043Nm|^{12} + \frac{506.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |-16.67Nm|^{12}}{0.2s \cdot 254.64 \frac{1}{\min} + 0.8s \cdot 509.295 \frac{1}{\min} + 0.2s \cdot 254.64 \frac{1}{\min}}{0.2s \cdot 254.64 \frac{1}{\min}}\right]}$$

$$M_{ath} = 5.009 Nm$$

Thermal factors for mounting position M1 $a_0=186$ $a_1=-0.257$ $a_3=0$

$$M_{Therm} = a_0 + a_1 \cdot n_{am} + \frac{a_2}{n_{am}^{1.2}}$$
$$M_{Therm} = 186 + (-0.257 \cdot 169.765 \frac{1}{\min}) + \frac{0}{169.765^{1.2}}$$
$$M_{Therm} = 142.37Nm$$

Selection condition:

$$M_{ath} \le M_{Therm}$$

 $5.035Nm \le 142.37Nm$

Condition is fulfilled.

Overhung load calculation

For transmission element factors for overhung loads of different transmission elements at the output shaft, refer to page 50 and page 53.

$$F_{R\max} = \frac{M_{\max}}{\frac{d_0}{2}} \cdot f_z$$

$$F_{R\max} = \frac{21.04 Nm}{\frac{0.075 m}{2}} \cdot 2.5$$

$$F_{R\max} = 1402 N$$

The force application point is the center of the output shaft. Selection condition:

$$F_{R\max} \le F_{RaPk}$$
$$1402N \le 2000N$$

Condition is fulfilled.

Calculating the bearing force

$$\begin{split} M_{akub} &= \sqrt[3]{\frac{n_{1} \cdot t_{1} \cdot |M_{1}|^{3} + \dots + \dots n_{n} \cdot t_{n} \cdot |M_{n}|^{3}}{n_{1} \cdot t_{1} + \dots + n_{n} \cdot t_{n}}} \\ M_{akub} &= \sqrt[3]{\frac{\frac{509.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |21.04 Nm|^{3} + 509.295 \frac{1}{\min} \cdot 0.8s \cdot |0.2043 Nm|^{3} + \frac{506.295 \frac{1}{\min}}{2} \cdot 0.2s \cdot |-16.67 Nm|^{3}}}{0.2s \cdot 254.64 \frac{1}{\min} + 0.8s \cdot 509.295 \frac{1}{\min} + 0.2s \cdot 254.64 \frac{1}{\min}}{2} \\ M_{akub} &= 11.172 Nm \end{split}$$

$$F_{Rkub} = \frac{M_{akub}}{\frac{d_0}{2}} \cdot f_z$$
$$F_{Rkub} = \frac{11.12Nm}{0.075m} \cdot 2.5$$

$$\frac{2}{F_{Rkub}} = 744.8N$$

Selection condition:

 $F_{Rkub} \le F_{R\max}$ 744.8 $N \le 1402N$

Condition is fulfilled.

Load torques in travel sections 1 to 3

Travel section 1

$$M_{e\max 1} = \frac{M_{dyn1}}{i \cdot \eta_G}$$
$$M_{e\max 1} = \frac{21.04Nm}{7 \cdot 0.99}$$
$$M_{e\max 1} = 3.036Nm$$

Travel section 2

$$M_{e \max 2} = \frac{M_{stat}}{i \cdot \eta_G}$$
$$M_{e \max 2} = \frac{0.2043Nm}{7 \cdot 0.99}$$
$$M_{e \max 2} = 0.0294Nm$$

Travel section 3

$$M_{e \max 3} = \frac{M_{dym3} \cdot \eta_G}{i}$$
$$M_{e \max 3} = \frac{-16.67Nm \cdot 0.99}{7}$$
$$M_{e \max 3} = -2.357Nm$$

Motor selection P

Preliminary determination of motor using torque M_{pk}.

n _N	Motor	Mo	I ₀	M _{pk}	I _{max}	M _{0VR}	I _{0VR}	J _{mot}	J _{bmot}	M _{B1}	M _{B2}	L ₁	R ₁	U _{p0} cold
min ⁻¹	WOUDI	Nm	А	Nm	А	Nm	A	kgo	cm ²	N	m	mH	Ω	V
	CMP40S	0.5	1.2	1.9	6.1	-	-	0.1	0.13	0.85		23	11.94	27.5
	CMP40M	0.8	0.95	3.8	6.0	-	-	0.15	0.18	0.95		45.5	19.92	56
	CMP50S	1.3	1.32	5.2	7.0	1.7	1.7	0.42	0.48	3.1	4.3	37	11.6	62
4500	CMP50M	2.4	2.3	10.3	13.1	3.5	3.35	0.67	0.73	4.3	3.1	20.5	5.29	66
4500	CMP50L	3.3	3.15	15.4	19.5	4.8	4.6	0.92	0.99	4.3	3.1	14.6	3.56	68
	CMP63S	2.9	3.05	11.1	18.3	4	4.2	1.15	1.49	7	9.3	18.3	3.34	64
	CMP63M	5.3	5.4	21.4	32.4	7.5	7.6	1.92	2.26	9.3	7	9.8	1.49	67
	CMP63L	7.1	6.9	30.4	41.4	10.3	10	2.69	3.03	9.3	7	7.2	1.07	71

Selected motor: CMP63M M_{pk} = 21.4 Nm J_{mot} = 1.92 × 10⁻⁴ kgm²

Determining the inertia ratio "k"

$$J_{ext} = 91.2 \cdot m \cdot \left(\frac{v_{max}}{n_{max}}\right)^2 + J_G$$

$$J_{ext} = 91.2 \cdot 50 kg \cdot \frac{\left(2\frac{m}{s}\right)^2}{3565.065\frac{1}{\min}} + 0.03 \cdot 10^{-4} kgm^2$$

$$J_{ext} = 14.38125 \cdot 10^{-4} kgm^2$$

This means J_{ext} is with reference to the motor shaft.

$$k = \frac{J_{ext}}{J_{Motor}}$$

$$k = \frac{14.38125 \cdot 10^{-4} kgm^2}{1.92 \cdot 10^{-4} kgm^2}$$

$$k = 7.49$$
Selection condition:

$$k \le 15$$

$$7.49 \le 15$$

Condition is fulfilled.

Intrinsic acceleration or deceleration of motor in sections 1 and 3

$$M_{Eigen} = (J_G + J_{Mot}) \cdot \frac{n_{max}}{9.55 \cdot t}$$
$$M_{Eigen} = (0.03 \cdot 10^{-4} kgm^2 + 1.92 \cdot 10^{-4} kgm^2) \cdot \frac{3565.065 \frac{1}{min}}{9.55 \cdot 0.2s}$$
$$M_{Eigen} = 0.3639 Nm$$

Maximum motor torques in sections 1 and 3

Travel section 1

$$M_{i1} = M_{e \max 1} + M_{Eigen}$$
$$M_{i1} = 3.036Nm + 0.3639Nm$$
$$M_{i1} = 3.3999Nm$$

Travel section 2

$$M_{i3} = M_{e \max 3} + M_{Eigen}$$
$$M_{i3} = -2.357 Nm + 0.3639 Nm$$
$$M_{i3} = -1.9931 Nm$$

Effective motor torque

$$M_{eff} = \sqrt{\frac{1}{t_z} \left(M_1^2 \cdot t_1 + \dots + M_n^2 \cdot t_n \right)}$$

$$M_{eff} = \sqrt{\frac{\left(3.399Nm \right)^2 \cdot 0.2s + \left(0.0294Nm \right)^2 \cdot 0.8s + \left(-1.9931Nm \right)^2 \cdot 0.2s}{3s}}$$

$$M_{eff} = 1.0174Nm$$

Thermal effective motor speed

$$\begin{split} n_{eff} &= {}^{1.5} \sqrt{\frac{n_1^{1.5} \cdot t_1 + \ldots + n_n^{1.5} \cdot t_n}{t_z}} \\ n_{eff} &= \sqrt{\frac{3565.065 \frac{1}{\min}}{2}^{1.5}} \cdot 0.2s + \left(3565.065 \frac{1}{\min}\right)^{1.5} \cdot 0.8s + \left(\frac{3565.065 \frac{1}{\min}}{2}\right)^{1.5} \cdot 0.2s} \\ n_{eff} &= \sqrt{\frac{3565.065 \frac{1}{\min}}{3s}} \cdot 0.2s + \left(3565.065 \frac{1}{\min}\right)^{1.5} \cdot 0.8s + \left(\frac{3565.065 \frac{1}{\min}}{2}\right)^{1.5} \cdot 0.2s} \\ n_{eff} &= 1646.3 \frac{1}{\min} \end{split}$$

Determining the dynamic and thermal motor operating points

• The thermal operating point must be below or exactly on the thermal limit characteristic curve:

$$M_{eff} \leq M_{Nenn}$$

• The dynamic limit torque must be checked:

$$M_{\max Mot} \leq M_{pk}$$

- [2] M_{dynamic} (n) 460 V
- [3] M_{dynamic} (n) 400 V
- [4] M_{dynamic} (n) 360 V
- [5] M S1_{thermal} (derating)

Inverter assignment

The inverter assignment of CMP servomotors to MOVIAXIS[®] and MOVIDRIVE[®] can be found in the "CMP40/50/63 Synchronous Servomotors" catalog.

Calculating the braking resistor

Peak braking power in travel section 3

$$P_{Br_{pk}} = \frac{M_{m} \cdot n_{m} \cdot \eta_{Last}}{9550}$$
$$P_{Br_{pk}} = \frac{1.9931Nm \cdot 3565 \frac{1}{\min} \cdot 0.9}{9550}$$
$$P_{Br_{pk}} = 0.6696kW$$

Mean braking power in travel section 3

$$P_{Br} = \frac{M_{m} \cdot n_{m} \cdot \eta_{Last}}{9550}$$

$$P_{Br} = \frac{1.9931Nm \cdot \frac{3565 \cdot \frac{1}{\min}}{2} \cdot 0.9}{9550}$$

$$P_{Br} = 0.3348kW$$

Effective braking power

$$P_{Br_eff} = \frac{P_{Br} \cdot t_3}{t_z}$$
$$P_{Br_eff} = \frac{0.3348kW \cdot 0.2s}{3s}$$
$$P_{Br_eff} = 0.223kW$$

The selection of the braking resistor depends, among other factors, on which braking resistor may be connected to the respective inverter. If you use a MOVIDRIVE[®] inverter, refer to the system manual for relevant notes.

If you use a ${\rm MOVIAXIS}^{\textcircled{R}}$ servo inverter, a suitable braking resistor must be determined using "SEW Workbench".

